On optimum Hamiltonians for state transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 4010949
(http://iopscience.iop.org/1751-8121/40/35/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.144
The article was downloaded on 03/06/2010 at 06:12

Please note that terms and conditions apply.

Corrigendum

On optimum Hamiltonians for state transformation

Dorje C Brody and Daniel W Hook 2006 J. Phys. A: Math. Gen. 39 L167-170

We have made an incorrect assertion below equation (7) regarding the eigenvalues of the Hamiltonian H in (7). The correct eigenvalues for the Hamiltonian H in (7) are $\pm \xi / 2$. The subsequent formulae appearing in the paper thus need to be amended as follows. Since the difference of the largest and the smallest eigenvalues of the Hamiltonian is 2ω, we have $\xi=2 \omega$. The Hamiltonian in (8) then reads

$$
\begin{equation*}
H=\frac{\mathrm{i} \omega}{\sin \frac{1}{2} \theta}\left|\psi_{I}\right\rangle\left\langle\psi_{F}\right|-\frac{\mathrm{i} \omega}{\sin \frac{1}{2} \theta}\left|\psi_{F}\right\rangle\left\langle\psi_{I}\right|+h(t) \mathbf{1} . \tag{8}
\end{equation*}
$$

The energy variance obtained in (9) must be replaced with

$$
\begin{equation*}
\Delta H=\omega, \tag{9}
\end{equation*}
$$

and the time required for the optimal transformation obtained in (10) must be replaced with

$$
\begin{equation*}
\tau=\frac{\hbar \theta}{2 \omega} \tag{10}
\end{equation*}
$$

The expression for the time dependent state vector in (11) becomes

$$
\begin{equation*}
|\psi(t)\rangle=\left[\cos \left(\frac{\omega t}{\hbar}\right)-\frac{\cos \frac{1}{2} \theta}{\sin \frac{1}{2} \theta} \sin \left(\frac{\omega t}{\hbar}\right)\right]\left|\psi_{I}\right\rangle+\frac{1}{\sin \frac{1}{2} \theta} \sin \left(\frac{\omega t}{\hbar}\right)\left|\psi_{F}\right\rangle . \tag{11}
\end{equation*}
$$

The coefficient of $\left|\psi_{I}\right\rangle$ in $|\psi(t)\rangle$ first vanishes at time $t=\hbar \theta / 2 \omega$.

